查看原文
其他

Flink 全链路端到端延迟的测量方法

is_ice zhisheng 2021-09-05

点击上方“zhisheng”,选择“设为星标”

后台回复”ffa“可以查看 Flink 资料


一、背景

FLink Job端到端延迟是一个重要的指标,用来衡量Flink任务的整体性能和响应延迟(大部分流式应用,要求低延迟特性)。
通过流处理引擎竞品对比,我们发现大部分流计算引擎产品,都在告警监控页面,集成了全链路时延指标展示。
一些低延时的处理场景,例如用于登陆、用户下单规则检测,实时预测场景,需要一个可度量的Metric指标,来实时观测、监控集群全链路时延情况。

二、源码分析来源

1、本文的源码分析基于FLink社区issue FLINK-3660,以及issue对应的pr源码pull-2386,另外,个人也新增了实现源码的说明。
2、其pr源码中只涉及到了部分全链路时延实现代码,因此,我在文章中总结了:
  • Source到Sink处理Latency Marker源码

  • LatencyMarksEmitter 提交时延标记类

  • LatencyStats(时延直方图Metric实现)源码

  • 时延测量–整体架构图


三、腾讯Oceanus监控指标参考

如下图,红色框线对应的数据延时,即我们描述的指标

四、Flink LatencyMarker实现思路

在webinterface中,加入流式job的端到端延迟是一个重要特性。因此,FLink社区最初的想法是在每个记录的source上附加一个摄取时间( ingestion -time)时间戳。
然而,这为不使用monitor feature(监控功能)的用户,带来了额外开销(每个元素+每个元素上的System.currentTimeMilis()需要8个字节)。
因此,FLink社区最后决定,通过定期发送特殊事件来实现此功能,类似于通过拓扑发送水印watermark。
这些特殊事件(LatencyMarker)在source上以可配置发送间隔,并由任务Task转发。Sink最后接收到LatencyMarks后,将比较LatencyMarker的时间戳与当前系统时间,以确定延迟。
LatencyMarker不会增加作业的延迟,但是LatencyMarker与常规记录类似,可以被delay阻塞(例如反压情况),因此LatencyMarker的延迟与Record延迟近似。
上述建议期望所有任务管理器TaskManager上的时钟是同步的。否则,测量的延迟也包括TaskManager时钟之间的偏移。
后续,我们可以尝试通过使用JobManager作为计时服务中心(central timing service)来缓解这个问题。taskmanager将定期查询JM的当前时间,以确定其时钟的偏移量。
这个偏移量仍然包括TM和JM之间的网络延迟,但是仍然比较好的测量时延。

五、Flink LatencyMarker实现源码

本章节对应到pr源码pull-2386的实现,这里简要说明。

Flink源码中,引入了一个新的StreamElement,称为LatencyMarker。
与水印类似,LatencyMarker按配置的间隔从源发出。这个时间间隔的默认值是0毫秒,即不触发 (配置项在ExecutionConfig#latencyTrackingInterval,名称metrics.latency.interval),例如可以配置成2000毫秒触发一次LatencyMarker发送。
LatencyMarker不能“多于”常规元素。这确保了测量的延迟接近于常规流元素的端到端延迟。
常规操作符Operator(不包括那些参与迭代的Operator)如果不是sink,就会转发延迟标记LatencyMarker。
具有多个输出channel的Operator,随机选择一个channel通道,将LatencyMarker发送给它。这可以确保每个LatencyMarker标记在系统中只存在一次,并且重新分区步骤不会导致传输的LatencyMarker数量激增。
public class RecordWriterOutput{ @Override public void emitLatencyMarker(LatencyMarker latencyMarker) { serializationDelegate.setInstance(latencyMarker);
try { // 内部实现了随机选择通道 recordWriter.randomEmit(serializationDelegate); } catch (Exception e) { throw new RuntimeException(e.getMessage(), e); } }}
上述RecordWriterOutput#emitLatencyMarker()会被StreamSource、AbstractStreamOperator调用,分别实现source和中间operator的延迟标记下发
如果操作符Operator是Sink,它将维护每个已知source实例的最后512个LatencyMarker信息。
每个已知source的最小/最大/平均值/p50/p95/p99时延,在sink的LatencyStats对象中,进行汇总(如果没有任何输出的Operator,就是是sink)。
此pr代码,不会在web ui中显示延迟。此外,目前还没有确保系统时钟同步的机制,因此如果硬件时钟不正确,则延迟测量将不准确。

六、总结说明

1、LatencyMarker不参与window、MiniBatch的缓存计时,直接被中间Operator下发。
2、Metric路径:TaskManagerJobMetricGroup/operator_id/operator_subtask_index/latency
3、每个中间Operator、以及Sink都会统计自己与Source节点的链路延迟,我们在监控页面,一般展示Source至Sink链路延迟。
4、延迟粒度细分到Task,可以用来排查哪台机器的Task时延偏高,进行对比和运维排查。
5、从实现原理来看,发送时延标记间隔配置大一些(例如20秒一次),一般不会影响系统处理业务数据的性能。

来源:blog.csdn.net作者:is_ice


如果觉得文章对你有帮助,请转发朋友圈、点在看,让更多人获益,感谢您的支持!



END


关注我

公众号(zhisheng)里回复 面经、ES、Flink、 Spring、Java、Kafka、监控 等关键字可以查看更多关键字对应的文章。

Flink 实战

1、《从0到1学习Flink》—— Apache Flink 介绍
2、《从0到1学习Flink》—— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门
3、《从0到1学习Flink》—— Flink 配置文件详解
4、《从0到1学习Flink》—— Data Source 介绍
5、《从0到1学习Flink》—— 如何自定义 Data Source ?
6、《从0到1学习Flink》—— Data Sink 介绍
7、《从0到1学习Flink》—— 如何自定义 Data Sink ?
8、《从0到1学习Flink》—— Flink Data transformation(转换)
9、《从0到1学习Flink》—— 介绍 Flink 中的 Stream Windows
10、《从0到1学习Flink》—— Flink 中的几种 Time 详解
11、《从0到1学习Flink》—— Flink 读取 Kafka 数据写入到 ElasticSearch
12、《从0到1学习Flink》—— Flink 项目如何运行?
13、《从0到1学习Flink》—— Flink 读取 Kafka 数据写入到 Kafka
14、《从0到1学习Flink》—— Flink JobManager 高可用性配置
15、《从0到1学习Flink》—— Flink parallelism 和 Slot 介绍
16、《从0到1学习Flink》—— Flink 读取 Kafka 数据批量写入到 MySQL
17、《从0到1学习Flink》—— Flink 读取 Kafka 数据写入到 RabbitMQ
18、《从0到1学习Flink》—— 你上传的 jar 包藏到哪里去了
19、大数据“重磅炸弹”——实时计算框架 Flink
20、《Flink 源码解析》—— 源码编译运行
21、为什么说流处理即未来?
22、OPPO数据中台之基石:基于Flink SQL构建实时数据仓库
23、流计算框架 Flink 与 Storm 的性能对比
24、Flink状态管理和容错机制介绍
25、原理解析 | Apache Flink 结合 Kafka 构建端到端的 Exactly-Once 处理
26、Apache Flink 是如何管理好内存的?
27、从0到1学习Flink》——Flink 中这样管理配置,你知道?
28、从0到1学习Flink》——Flink 不可以连续 Split(分流)?
29、Flink 从0到1学习—— 分享四本 Flink 的书和二十多篇 Paper 论文
30、360深度实践:Flink与Storm协议级对比
31、Apache Flink 1.9 重大特性提前解读
32、如何基于Flink+TensorFlow打造实时智能异常检测平台?只看这一篇就够了
33、美团点评基于 Flink 的实时数仓建设实践
34、Flink 灵魂两百问,这谁顶得住?
35、一文搞懂 Flink 的 Exactly Once 和 At Least Once
36、你公司到底需不需要引入实时计算引擎?
37、Flink 从0到1学习 —— 如何使用 Side Output 来分流?
38、一文让你彻底了解大数据实时计算引擎 Flink
39、基于 Flink 实现的商品实时推荐系统(附源码)
40、如何使用 Flink 每天实时处理百亿条日志?
41、Flink 在趣头条的应用与实践
42、Flink Connector 深度解析
43、滴滴实时计算发展之路及平台架构实践
44、Flink Back Pressure(背压)是怎么实现的?有什么绝妙之处?
45、Flink 实战 | 贝壳找房基于Flink的实时平台建设
46、如何使用 Kubernetes 部署 Flink 应用
47、一文彻底搞懂 Flink 网络流控与反压机制
48、Flink中资源管理机制解读与展望
49、Flink 实时写入数据到 ElasticSearch 性能调优
50深入理解 Flink 容错机制
51吐血之作 | 流系统Spark/Flink/Kafka/DataFlow端到端一致性实现对比

Flink 源码解析



知识星球里面可以看到下面文章

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存